Numerical investigation of supercritical heat transfer of water flowing in vertical and horizontal tube with emphasis of gravity effect

نویسندگان

چکیده

Over a decade, coal-based thermal power plants are upgraded to operate at supercritical pressure conditions due its high efficiency and low emissions. Water wall panels of typical boiler structured spirally in the lower furnace vertically placed upper furnace. The spiral tubes inclined 19 22 degrees which fluid behaves as horizontal tubes. design water plays key role designing boiler. present work aims numerically investigate heat transfer behavior both vertical conditions. Since temperature distribution across cross-section tube is uniform, 2D axis symmetry has been considered for analyzing tube. Unlike tube, characteristics different Therefore, 3D modelled computation In order gain confidence, simulations validated with experiments results available literature. Ansys-Fluent used simulation. SST k-ω turbulence model this analysis. work, 10 mm diameter 4m length chosen simulated flux mass ratio 0.27 0.67 241 bar. effect (q) (G) responsible enhancement deterioration studied plotted along top bottom portion compared buoyancy vital horizontal
 Heat occurs direct linkage gravity. Three cases were studied, one full gravity (factor 1), half 0.5) zero 0). It observed that, sudden rise case factor 1.0, i.e, considering effect. For gravity, no peak local absence term Navier-Stokes equations. Some thermo-physical properties like velocity, turbulent kinetic energy, density, viscosity analyzed three cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were ...

متن کامل

: the effect of sericin levels (silk glue protein) on rate of in vitro maturation, fertilization and culture of sheep oocytes

هدف از آزمایش اول بررسی اثر سطوح مختلف سریسین [0 (control), 0.1, 0.5, 1.0, 2.5 %] افزوده شده به محیط , ivm بر cumulus cell expansion، بلوغ هسته و توسعه متوالی جنین، در گوسفندان نژاد سنجابی در فصل تولید مثلی می باشد. از سرگیری میوز به وسیله خارج شدن اولین پولار بادی اندازه گیری و هم چنین درصد رسیدن جنین های دو سلولی به مرحله کلیواژ و بلاستوسیت نیز به عنوان نشانه ای از میزان شایستگی توسعه اولیه ج...

Numerical investigation of heat transfer in parallel channels with water at supercritical pressure

Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD p...

متن کامل

detection of volatile compounds of medicinal plants with some nano-sorbents using modified or new methodologies and investigation of antioxidant activity of their methanolic extracts

in this work, a novel and fast method for direct analysis of volatile compounds (davc) of medicinal plants has been developed by holding a filament from different parts of a plant in the gc injection port. the extraction and analysis of volatile components of a small amount of plant were carried out in one-step without any sample preparation. after optimization of temperature, extraction time a...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Thermal Engineering

سال: 2021

ISSN: ['2148-7847']

DOI: https://doi.org/10.18186/thermal.991098